Texte 1 :
Pascal explique ici quelles sont les limites du modèle géométrique. Ce sont aussi les limites de la démonstration :
“Cette véritable méthode, qui formerait les démonstrations dans la plus haute excellence, s’il était possible d’y arriver, consisterait en deux choses principales l’une, de n’employer aucun terme dont on n’eût auparavant expliqué nettement le sens; l’autre, de n’avancer jamais aucune proposition qu’on ne démontrât par des vérités déjà connues; c’est-à-dire, en un mot, à définir tous les termes et à prouver toutes les propositions. […] Certainement cette méthode serait belle, mais elle est absolument impossible: car il est évident que les premiers termes qu’on voudrait définir, en supposeraient de précédents pour servir à leur explication, et que de même les premières propositions qu’on voudrait prouver en supposeraient d’autres qui les précédassent; et ainsi il est clair qu’on n’arriverait jamais aux premières. Aussi, en poussant les recherches de plus en plus, on arrive nécessairement à des mots primitifs qu’on ne peut plus définir, et à des principes si clairs qu’on n’en trouve plus qui le soient davantage pour servir à leur preuve. D’où il paraît que les hommes sont dans une impuissance naturelle et immuable de traiter quelque science que ce soit, dans un ordre absolument accompli. Mais il ne s’ensuit pas de là qu’on doive abandonner toute sorte d’ordre. Car il y en a un, et c’est celui de la géométrie, qui est à la vérité inférieur en ce qu’il est moins convaincant, mais non pas en ce qu’il est moins certain. Il ne définit pas tout et ne prouve pas tout, et c’est en cela qu’il lui cède; mais il ne suppose que des choses claires et constantes par la lumière naturelle, et c’est pourquoi il est parfaitement véritable, la nature le soutenant au défaut du discours. Cet ordre, le plus parfait entre les hommes, consiste non pas à tout définir ou à tout démontrer, ni aussi à ne rien définir ou à ne rien démontrer, mais à se tenir dans ce milieu de ne point définir les choses claires et entendues de tous les hommes, et de définir toutes les autres ; et de ne point prouver toutes les choses connues des hommes, et de prouver toutes les autres. “ Pascal, De l’esprit géométrique (1658).
Commenter cet article